延迟在迅速变化的环境中运行的自主系统的危害安全性,例如在自动驾驶和高速赛车方面的交通参与者的非确定性。不幸的是,在传统的控制器设计或在物理世界中部署之前,通常不考虑延迟。在本文中,从非线性优化到运动计划和控制以及执行器引起的其他不可避免的延迟的计算延迟被系统地和统一解决。为了处理所有这些延迟,在我们的框架中:1)我们提出了一种新的过滤方法,而没有事先了解动态和干扰分布的知识,以适应,安全地估算时间变化的计算延迟; 2)我们为转向延迟建模驱动动力学; 3)所有约束优化均在强大的管模型预测控制器中实现。对于应用的优点,我们证明我们的方法适合自动驾驶和自动赛车。我们的方法是独立延迟补偿控制器的新型设计。此外,在假设无延迟作为主要控制器的学习控制器的情况下,我们的方法是主要控制器的安全保护器。
translated by 谷歌翻译
随着图像识别中深度学习模型的快速发展和使用的增加,安全成为其在安全至关重要系统中的部署的主要关注点。由于深度学习模型的准确性和鲁棒性主要归因于训练样本的纯度,因此,深度学习体系结构通常容易受到对抗性攻击的影响。对抗性攻击通常是通过对正常图像的微妙扰动而获得的,正常图像对人类最不可感知,但可能会严重混淆最新的机器学习模型。我们提出了一个名为Apudae的框架,利用DeNoing AutoCoders(DAES)通过以自适应方式使用这些样品来纯化这些样本,从而提高了已攻击目标分类器网络的分类准确性。我们还展示了如何自适应地使用DAE,而不是直接使用它们,而是进一步提高分类精度,并且更强大,可以设计自适应攻击以欺骗它们。我们在MNIST,CIFAR-10,Imagenet数据集上展示了我们的结果,并展示了我们的框架(Apudae)如何在净化对手方面提供可比性和在大多数情况下的基线方法。我们还设计了专门设计的自适应攻击,以攻击我们的净化模型,并展示我们的防御方式如何强大。
translated by 谷歌翻译
随着在图像识别中的快速进步和深度学习模型的使用,安全成为他们在安全关键系统中部署的主要关注点。由于深度学习模型的准确性和稳健性主要归因于训练样本的纯度,因此深度学习架构通常易于对抗性攻击。通过对正常图像进行微妙的扰动来获得对抗性攻击,这主要是人类,但可以严重混淆最先进的机器学习模型。什么特别的智能扰动或噪声在正常图像上添加了它导致深神经网络的灾难性分类?使用统计假设检测,我们发现条件变形自身偏析器(CVAE)令人惊讶地擅长检测难以察觉的图像扰动。在本文中,我们展示了CVAE如何有效地用于检测对图像分类网络的对抗攻击。我们展示了我们的成果,Cifar-10数据集,并展示了我们的方法如何为先前的方法提供可比性,以检测对手,同时不会与嘈杂的图像混淆,其中大多数现有方法都摇摇欲坠。
translated by 谷歌翻译
随着使用复杂非线性优化但计算资源有限的经济实惠的自动驾驶车辆,计算时间成为关注问题。其他因素,如执行器动力学和执行器命令处理成本也不可避免地导致延迟。在高速场景中,这些延迟对于车辆的安全至关重要。最近的作品将这些延迟单独考虑,但没有在自动驾驶的背景下统一它们。此外,最近的作品不恰当地考虑计算时间作为恒定或大的上限,这使得控制较少响应或过保守。要处理所有这些延迟,我们通过1)统一的框架,使用鲁棒管模型预测控制,3)使用新型Adaptive Kalman滤波器,无需假定已知的过程模型和噪声协方差,这使得控制器安全尽量减少保守性。在一次性的情况下,我们的方法可以作为独立控制器;在其他手上,我们的方法为高级控制器提供了一个安全防护装置,这不拖延。这可以用于在部署在简单环境中培训的黑匣子学习的控制器时补偿SIM-TO-REAL间隙,而不考虑实际车辆系统的延迟。
translated by 谷歌翻译